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ABSTRACT 

 

Black holes, thermodynamics, and entropy are three topics which both separately and together raise several quite deep 

and serious questions which need to be addressed. Here an attempt is made to highlight some of these issues and to 

indicate a possible linkage between the accepted entropy expression for a black hole and the paradox linked to black 

holes and information loss. 
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INTRODUCTION  

 

The article Comment on ‘What Information Loss is Not’ 

(Cai et al., 2014) proved to be an interesting and 

informative read but it also provoked several thoughts 

concerning the interrelation of the three topics mentioned 

in the title to this note – black holes, thermodynamics, and 

entropy. All three separately provide much food for 

thought but, when considered together, the thoughts and 

queries become overwhelming – what is a black hole? Do 

black holes exist? How does thermodynamics fit into the 

picture? What is entropy? And possibly most important of 

all, are the entropies alluded to in thermodynamics, in 

statistical mechanics and in information theory identical 

functions? The purpose of this note is to highlight these 

questions but not necessarily provide concrete answers to 

all, as well as to point out that the paradox linked with 

black holes and information loss may be linked to the 

commonly accepted entropy expression for such bodies. 

 

Black holes 

In 1784, Michell (1784) first derived an expression, using 

Newtonian mechanics, for the mass-radius ratio of a 

spherical body having an escape speed equal to, or greater 

than, the speed of light. Such a body as Michell envisaged 

has erroneously been termed a black hole in the past but it 

might more accurately be termed a dark body since, if 

such a body exists, it would be simply a very dense body 

which could be approached and, in fact, viewed from a 

suitable distance, unlike the modern notion of a black 

hole. Obviously, this latter comment is in accordance with 

the usual meaning of the ‘escape speed’. 

 

However, towards the middle of the last century, the 

modern idea of a black hole appeared. Such a body occurs 

as a consequence of a singularity apparently appearing in 

the form of the Schwarzschild solution to Einstein’s field 

equations of general relativity for the case of a spherically 

symmetric mass point which appears in most textbooks on 

general relativity and cosmology (Adler et al., 1965). 

Normally, this solution is stated as being either  
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or more usually 
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(2) 

 

where the universal constant of gravitation, G, and the 

speed of light, c, have both been put equal to unity. Here 

r, , and  appear to be taken to be normal polar co-

ordinates. 

 

In the above expressions, a mathematical singularity is 

seen to occur when r = 0, as might be expected for polar 

co-ordinates. However, due to the form of the coefficient 

of dr2, it follows that a second mathematical singularity 

occurs when, in the first of the above equations, rc2 = 

2Gm or, in the second, r = 2m. The first singularity is 

regularly dismissed as being merely a property of polar 
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co-ordinates and, therefore, of no physical significance. 

The second singularity, however, tends to have a physical 

interpretation attributed to it - namely that it is said to 

indicate the existence of a black hole. If this interpretation 

were valid, it would imply that, for an object of mass m 

and event horizon radius r to be a black hole, it would 

need to satisfy the following inequality (Dunning-Davies, 

2022): m/r  c2/2G = 6.7  1026 [kg/m]. It is of interest to 

note that, for Michell’s dark body, the ratio of mass to 

actual radius, rather than radius of the event horizon, 

formally gives exactly the same result (Michell, 1784). 

  

These days, claims for the identification of black holes 

appear fairly regularly in the scientific literature. Quite 

often, the supposed existence of massive black holes - is 

invoked to explain some otherwise puzzling phenomenon. 

However, so far, on no occasion has the postulated object 

satisfied the requirement mentioned earlier that, for a 

black hole, the ratio of the body’s mass to its radius – or 

more specifically in general relativistic language, the 

radius of its event horizon – must be subject to the 

following restriction: m/r  6.7  1026 [kg/m]. Also, what 

some regard as the defining feature of a black hole – its 

event horizon – has never been positively identified. 

 

Black holes and thermodynamics 

In retrospect, it seems that it was inevitable that the 

analogy between an area theorem for black holes 

(Hawking, 1976) which asserted that, in any process 

involving black holes, the total area of the event horizon 

may only increase, and the established increase in entropy 

due to thermal interactions, was one that could not go 

unnoticed for long. If a connection was to be established, 

the question remaining was what function of the area was 

to be identified with the entropy of a black hole? The 

simplest choice compatible with Hawking’s theorem is to 

set the black hole entropy proportional to the area of the 

event horizon itself.   

 

Black holes are said to obey the ‘no-hair’ theorem. This 

states that black holes cannot be distinguished except for 

their mass, charge and angular momentum. In the simplest 

case of a Schwarzschild black hole, which is uncharged 

and non-rotating, the area of the event horizon is 

proportional to the so-called ‘irreducible’, or 

‘inextractable’, part of the mass of the black hole. 

Actually, the entropy is postulated to have the form:  
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where M is the ‘irreducible’ mass of the black hole and σm 

= (ch/2πG)1/2 = 2 × 105 [g] is the Planck mass.  

 

Actual criticism of the established view has been 

minimal. However, it has been pointed out that, in 

conventional thermodynamics, the entropy is a first-order 

homogeneous function in all the extensive variables and 

this is not the case for this commonly accepted black hole 

entropy expression. (Here extensive variables, such as 

internal energy, volume and number of particles, are those 

which depend on the size of the particular system; all 

other variables, such as temperature and pressure, are 

termed intensive variables.) This might seem a somewhat 

trivial point to many people but it is, in fact, a feature 

which has several important consequences. In orthodox 

thermodynamics, one very useful formula is the Gibbs-

Duhem equation which is a relation linking all the 

intensive variables of a system and shows that these 

variables are not all independent of one another. This 

formula has many important consequences and features in 

the derivation of many other formulae. However, the 

derivation of the Gibbs-Duhem relation itself depends 

critically on the extensive nature of the entropy of the 

system. Since the proposed black hole entropy expression 

is certainly not extensive in nature, it follows that there is 

no Gibbs-Duhem equation for such a system (Dunning-

Davies, 2011). Hence, formulae derived by using the 

Gibbs-Duhem relation must be excluded from use also 

when discussing such systems. It is possible that this is a 

technical point, which may be appreciated fully only by 

the theoretician but it is an important point which cannot 

be over-emphasised. The same argument may be 

employed when considering the derivation of the well-

known Einstein – Boltzmann formula for the probability 

of spontaneous fluctuations. This derivation holds no 

longer also. This follows because the Einstein formula 

implies that the entropy is an additive function; that is, if 

two systems are considered, the entropy of the combined 

system equals the sum of the entropies of the individual 

systems. Alternatively, this may be viewed as meaning 

that the joint probability of different events reduces to the 

product of the individual probabilities, implying statistical 

independence; in other words, the product of probability 

densities is tantamount to the sum of the entropies, which 

is Boltzmann’s principle. Quite clearly, this is simply not 

possible for the present case because of the precise nature 

of Hawking’s area theorem, from which it may be 

concluded that, if two black holes are combined, the 

entropy of a combined black hole is always greater than 

the sum of the entropies of the individual black holes, 

excluding the case where equality may hold. Hence, the 

Einstein – Boltzmann formula for a spontaneous 

fluctuation from equilibrium may not be used when 

considering thermodynamic black hole fluctuations. At 

the very least, this point has not been fully appreciated on 

a number of occasions and the said formula has been 

applied in a number of situations where its use is simply 

not permissible. 

 

The fact that the sum of the areas before collision is not 

equal to the area after collision means that 

thermodynamic equilibrium may not be achieved. 

Consider two isolated systems at different temperatures. 
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Suppose they are placed in thermal contact with one 

another but isolated from everything else. Eventually, in 

accordance with the zeroth law of thermodynamics, they 

will arrive at a common temperature. During this process, 

there will have been an increase in entropy. However, if 

the two separate systems had initially been at the same 

temperature, the entropy would not have increased. The 

above mentioned Bekenstein-Hawking expression for the 

entropy of a black hole is unable to cope with this 

particular, but very important, case since, if M1 and M2 are 

the masses of the two black holes, then the mass after the 

collision is given by 
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Another important consequence of the presently accepted 

black hole entropy expression is that the heat capacity of 

the system is negative. Although such heat capacities are 

no strangers in astrophysics, inevitably they refer to one 

component, or phase, of a multicomponent, or multiphase, 

system. In reality a black hole must be an open system but 

it is always treated as a closed system. The mass could be 

written as the product M = Nm, where N is the number of 

‘particles’ in the black hole having mass m, but, if N is not 

conserved, it would then be necessary to specify the 

second phase. Further, it has been shown possible for a 

negative heat capacity in a closed system to lead to a 

violation of the second law of thermodynamics and so, 

such heat capacities cannot be permissible. This point has 

been strengthened even more by work which indicates 

that it is the mathematical property of concavity of the 

entropy which embodies the essence of the second law. 

 

It might be argued that the second law, as popularly 

known, does not hold for such exotic objects as black 

holes. This is not a totally unreasonable point of view 

since the said law, although it might be said to have stood 

the test of time, is really a statement of fact based on 

worldly experience. For the hundred and fifty years or so 

since it was first proposed, people have sought to find 

violations of the second law of thermodynamics, just as 

they have striven to find violations of the first law. The 

reason for this preoccupation is the lure of ‘getting 

something for nothing’, while making massive inroads 

into the problem of solving the world’s energy 

requirements. It goes without saying that, so far, all these 

efforts have been in vain. However, as pointed out by 

Planck, if units of time, length, and mass that may be 

constructed from the fundamental constants of nature 

“necessarily retain their significance for all times and for 

all cultures, including extraterrestrial and nonhuman ones, 

these ‘natural units’ would retain their natural 

significance as long as the laws of gravitation and the 

propagation of light in vacuum, and the two laws of 

thermodynamics retain their validity” (Planck, 1901). 

Therefore, according to Planck, to question universality 

and the fundamental constants is tantamount to 

questioning the two laws of thermodynamics. Although it 

might be argued that it is not concavity but rather the 

property of super-additivity that is the true stamp of 

entropy, it only requires one single exception to disprove 

this possibility. That exception is provided by black body 

radiation which possesses a sub-additive entropy. 

 

Since black body radiation has been mentioned, it seems 

worth considering, at this point, what happens when a 

black hole is bathed in black body radiation in a closed 

container. In the Bekenstein-Hawking entropy expression, 

the original dependence is on M, the ‘irreducible’ mass. It 

is only via use of the following relation:  

 

E = Mc2 (5) 

 

that the dependence of the entropy on the energy is 

established. Hence, for the Schwarzschild black hole, the 

entropy is given by 
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while that of black body radiation is given by 
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where  is the radiation constant. It needs a little 

imagination to achieve it but, given that, it might be 

possible to become convinced that the total entropy in the 

container is given by the sum of these two expressions; 

that is, 
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The constancy of the total energy, E = Ebh + Ebb, means 

that dEbh = – dEbb or, in other words, any changes in the 

black hole entropy must be exactly balanced by 

corresponding changes in the black body entropy. Again, 

the condition for thermal equilibrium demands that any 

change in the total entropy vanishes for arbitrary 

variations of energy. Hence, 

 

1/Tbh = 1/Tbb (9) 

 

where, in an obvious notation, Tbh and Tbb represent the 

black hole and black body temperatures respectively. 

 

Further, following earlier work, it might seem that 
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is a condition for thermodynamic stability in a system 

comprising two bodies; in this case, the two bodies being 

a black hole and black body radiation. From this last 

inequality, which expresses the concavity of the total 

entropy, there would result  

 

Ebb  Ebh/4 (11) 

 

In Hawking’s words, “in order for the configuration of a 

black hole and gravitons to maximise the probability, the 

volume, V, of the box must be sufficiently small that the 

energy Ebb of the black body gravitons is less than ¼ the 

mass of the black hole”. However, thermodynamics can 

never place limits on the size of the volume or energy 

above which the system would be unstable. 

Thermodynamics is a ‘black box’ that provides no 

specific information about the system under 

consideration. An explicit physical model is necessary if 

actual numerical values are to be obtained.  

 

In the situation just considered, a system composed of two 

parts – a black hole and black body radiation – was under 

examination. However, what precisely is a composite 

system? The notion of a composite system was introduced 

by Carathéodory (), when he looked at the problems 

surrounding the foundations of thermodynamics at the 

beginning of the last century, in order to avoid 

considering non-equilibrium states. In fact, he compared 

two states of equilibrium, a more and a less constrained 

state of thermodynamic equilibrium that is achieved from 

the former by removing a restrictive partition between the 

two subsystems. Here the subsystems must necessarily be 

of the same type and not two different types, such as in 

the situation considered by Hawking (1976). It was 

claimed that “although the canonical ensemble did not 

work for black holes, one can still employ a 

microcanonical ensemble of a large number of similar 

insulated systems each with a fixed energy E”. 

 

It should be noted that all the material contained in the 

foregoing discussion is well documented (Dunning-

Davies, 2011; Lavenda, 1991, 1995).  

 

Entropy 

Although thermodynamics is a subject based on 

phenomena with which all are familiar, it is, nevertheless, 

a topic which causes many worries and concerns. Much of 

these centres around the concept of entropy, possibly 

because it is the one quantity in the introduction to the 

subject which is not in any way part of people’s everyday 

experience. Hence, as such, an aura of mystery surrounds 

this quantity for most people. If people are more 

mathematically inclined, the problem is less severe since, 

whatever the approach adopted, the entropy is seen to 

enter the theory merely as the name given to a total 

derivative, where that total derivative equals an inexact 

differential of the heat multiplied by its integrating factor 

which is the reciprocal of the absolute temperature. The 

problem is exacerbated in all probability by at least two 

modern occurrences:   

(i) the modern tendency to drift away from the 

origins of the subject and so, cease to stress the 

importance of cycles in the development  

(ii) possible confusion caused by the link between 

thermodynamics  

and statistical mechanics. 

 

As far as the first of these is concerned, it must always be 

remembered that the founding fathers of thermodynamics 

were closely involved with the working of heat engines. 

The only place in the early development where cycles 

were not involved was in the observations of Rumford. 

Apart from that, people like Carnot derived their 

inspiration from the practical work of men like Watt and 

Trevithick who were concerned with improving the 

efficiency of heat engines for use in, amongst other 

places, the Cornish tin mines. Some of Carnot’s 

inspiration came from a desire to help the French catch up 

with the British in this area of production of heat engines. 

Hence, cycles were a vitally important part of the 

beginnings of thermodynamics and the people who 

pushed it forward and began to give the topic a firm 

theoretical foundation – Thomson (Lord Kelvin), Tait, 

Clausius (Tait, 1877, 2009; Magie, 2007) – based their 

work on engines working in cycles. It should be noted 

that the two modern versions of the famous statements of 

the Second Law, that due to Thomson: 

 

It is impossible to transform an amount of heat 

completely into work in a cyclic process in the absence 

of other effects 

 

and that due to Clausius: 

 

It is impossible for heat to be transferred by a cyclic 

process from a body to one warmer than itself in the 

absence of other effects, 

 

both stress the notion of cyclic processes as well as the 

absence of effects other than those specifically mentioned. 

It might be noted also that these are the fundamental 

forms of the Second Law. In what follows, mention will 

be made of the possibility of entropy increasing in an 

irreversible change. It should be noted that the property of 

entropy increase, even if true, is not a statement of the 

Second Law of Thermodynamics; at best, it is merely a 

deduction from that law. 
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The link between thermodynamics and statistical 

mechanics can also lead to problems since, normally, the 

entropy of thermodynamics is immediately equated with 

the entropy of statistical mechanics. It is obvious to see 

why such an identification should be made, but a 

moment’s reflection immediately identifies serious 

problems. When the question is considered, it is realised 

at once that the backgrounds of the two entropies are 

somewhat different; that from thermodynamics is purely 

due to a change in heat, but that in statistical mechanics, 

at first sight at least, is a function related to the statistical 

distribution of the particles under consideration. Possibly 

even more confusion arises due to the modern tendency to 

link the entropy function associated with information 

theory with those of thermodynamics and statistical 

mechanics. At first sight, because of its mathematical 

form, this does not seem unreasonable but a moment’s 

reflection indicates concerns. While the possibility of a 

link between the entropy functions of thermodynamics 

and statistical mechanics can be justified, it is far more 

difficult to do so with the function of information theory 

because there is no immediate link with a change in heat 

in the information theory case. This point cannot be 

overemphasised; in the thermodynamics, an entropy 

change is irrevocably linked with a change in heat.  

 

CONCLUSION  

 

This paper has briefly touched several important topics 

concerning the black holes, thermodynamics, and entropy.  

The represented discussion can be treated as an attempt to 

indicate a possible linkage between the accepted entropy 

expression for a black hole and the paradox linked to 

black holes and information loss. 
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